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Abstract

In South America, dengue is the arbovirus-transmitted disease with the highest incidence. Unlike other ar-
boviruses, wild mammals have no confirmed role in the cycle of dengue in the neotropics, although serologi-
cal studies have suggested a possible secondary amplification cycle involving mammals other than nonhuman
primates. In French Guiana, where all four serotypes (DENV-1, DENV-2, DENV-3, DENV-4) are present, the
disease is endemic with outbreak events. To determine whether wild mammals can be infected by DENV, ro-
dents, marsupials, and bats were captured over several periods, from 2001 to 2007, at two sites. The first loca-
tion is a secondary forest surrounded by an urban area where dengue is endemic. The second location is a for-
est edge site where the disease has not yet emerged. A total of 10,000 trap-nights were performed and 616
mammals were captured. RNAs representing the four DENV serotypes were detected at both sites by reverse-
transcriptase polymerase chain reaction in the livers and/or sera of 92 mammals belonging to 14 out of 32
species distributed among all the orders investigated: Rodentia (33 positive/146 tested), Marsupialia (40/318),
and Chiroptera (19/152). Sequence analyses of a portion of the capsid and premembrane junction revealed that
mammal strains of DENV-1, DENV-2, DENV-3, and DENV-4 had only 92.6%, 89%, 95%, and 95.8% identity,
respectively, with strains circulating in the human population during the same periods. Regarding DENV-2,
strains related (99% identity) to those responsible for an epidemic event in humans in French Guiana concur-
rent to the capture sessions were also evidenced, suggesting that wild mammals in edge habitats can be in-
fected by circulating human strains. Our results demonstrate, for the first time, that neotropical wild mammals
can be infected with dengue virus. The question of whether mammals maintain DENV in enzootic cycles and
can play a role in its reemergence in human populations remains to be answered.
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Introduction

DENGUE virRUs (DENV) BELONGS to the Flaviviridae family
and has been responsible for major epidemics in the
tropics since the 17th century (Gubler 2001). Its associated
disease manifestations (dengue fever, dengue hemorrhagic
fever, and dengue shock syndrome) are caused by four vi-
ral serotypes designated DENV-1, DENV-2, DENV-3, and
DENV-4 that are widespread in the tropics throughout the

world with significant public health and economic impacts.
Indeed, with respect to both morbidity and mortality,
dengue is the arbovirus with the highest incidence in hu-
mans (an estimated 80-100 million infections are reported
each year), with exponentially increasing occurrence
(Weaver and Barrett 2004) and expanding distribution
(Solomon and Mallewa 2001). The extent of epidemic events
has been increasing due to several factors: the increase in hu-
man population densities and movements worldwide,
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poorly managed urbanization, and less attention paid to the
eradication of domestic and peridomestic Aedes (Stegomyia)
spp. mosquitoes. Up until now, factors regulating dengue
outbreaks have mainly been related to the ecology of vec-
tors, including seasonal variation of densities, relative abun-
dance of infective females, daily survival rates (Kuno 1997),
immune status of human hosts (Halstead 2007), and possi-
bly their genetic background (Rico-Hesse 2003).

Unlike most of the other arboviruses, dengue virus pos-
sesses a unique human-to-human cycle, without the need for
an intermediary wild mammalian reservoir (Rodhain 1991,
Monath 1994). In Africa, Asia, and possibly in the Philip-
pines, the virus nevertheless has, together with the human
urban cycle, a sylvatic cycle, most likely involving nonhu-
man primates as reservoirs (Fagbami et al. 1977, Inoue et al.
2003). Serological investigations in mammals suggest that the
circulation of dengue follows epidemiological patterns, with-
out detectable clinical signs in hosts (Saluzzo et al. 1986a, de
Silva et al. 1999). The oscillating nature of cycles (Diallo et
al. 2003) can suggest that herd immunity of nonhuman pri-
mates and/or possibly other mammalian hosts regulates vi-
ral amplifications, but so far, wild mammals have no dem-
onstrated role in the dengue virus emergence processes in
humans. Indeed, sylvatic dengue strains are genetically and
ecologically distinct from urban ones. Nevertheless, though
epidemic events are induced by nonsylvatic strains (Rico-
Hesse 1990), sylvatic strains can induce characteristic febrile
syndromes in West Africa (Carey et al. 1971, Saluzzo et al.
1986b) and limited epidemics in urban settings (Vasilakis et
al. 2008).

Sylvatic cycles have not been recognized in South America
(Hayes et al. 1996, Scott 2001), in agreement with the supposed
recent introduction of dengue in the New World due to hu-
man population flows during the colonization and slave trade
periods, a scheme supported by both genetic variability
(Gaunt et al. 2001) and historical records (Christie 1881, Stead-
man 1828). Two serological studies in remote forest
Amerindian communities nevertheless led to divergent results
with regard to the potential sylvatic circulation of DENV
(Roberts et al. 1984, Valero et al. 2004). These discrepancies
can be explained by virus divergence that may have led to
technical difficulties in the detection of dengue viral infection
by commonly used serological markers. Investigations on
dengue sylvatic strains in wild mammals have also led to con-
tradictory conclusions. Following the negative results ob-
tained in serological investigations (Rosen 1958, Karesh et al.
1998, Contigiani et al. 2000), other works have shown indirect
evidence of dengue virus infection in mammals. In Central
America, antibodies that neutralized DENV-1 and DENV-2
were detected in 20% of tested bats, while in Ecuador 30% of
bats had neutralizing antibodies for DENV-2 and/or DENV-
3 (Platt et al. 2000). In French Guiana, neutralizing antibodies
for DENV-2 virus were also detected in the sera of rodents,
bats, marsupials, ungulates, and xenarthres (de Thoisy et al.
2004). But, because these neutralizing titers were generally
low, they could have been induced by other flaviviruses. Nev-
ertheless, DENV is presumed to make its own antigenic com-
plex within the Flaviviridae (Calisher et al. 1989). On the basis
of these studies, a strictly sylvatic dengue circulation can
therefore not be excluded.

To resolve these questions, we investigated the presence
of dengue virus in wild mammal fauna in areas of French

DE THOISY ET AL.

Guiana, using molecular tools, where dengue is endemic,
with outbreaks of DENV-1, DENV-2, and DENV-3 reported
since 1991. Only DENV-4 has been detected sporadically
(Dussart et al. 2006). Two distinct sites were targeted. The
first was near the city of Cayenne, where all four dengue
serotypes circulate. There, we monitored fauna over a 6-year
period, during and between dengue epidemics, to gain in-
sights into the susceptibility of free-ranging mammals pres-
ent close to human settlements to infection with DENV and
the possibility that they can maintain a continuous trans-
mission cycle in the wild. A second site was chosen in a rural
location where DENYV is practically absent. This area is un-
dergoing rapid development, with the construction of roads
and the establishment of new human settlements. It was thus
of twofold interest. First, it would allow us to investigate po-
tential occurrence of sylvatic circulation. Second, as dengue
emergence events are expected to be related to environ-
mental disturbances, a long-term study site would be valu-
able to evaluate potential movements of DENV from humans
to mammals and conversely.

Materials and Methods
Sites and trapping

French Guiana is a French overseas department on the
northeast coast of the South American continent, between
Brazil and Suriname (4°N 53°W). Ninety percent of its sur-
face area of 89,000 km? FD is tropical rain forest; the re-
maining 10%, situated in the northern part of the country, is
coastal plain, where 90% of the 200,000 inhabitants live. The
main urban center is Cayenne, with a total of 100,000 in-
habitants. The diurnal temperature in the country varies
from 28°C to 30°C. The dry season occurs from August to
November with a short dry period in March (50 to 150 mm
rain/month) and the rainy season lasts throughout the re-
mainder of the year (200 to 600 mm rain/month).

Animals (bats, terrestrial and arboreal rodents, and mar-
supials) were captured at two different sites. The first, known
as “le Camp du Tigre” (CT), is a secondary forest fragment
of about 100 hectares located in a periurban area near
Cayenne, where dengue is endemic. Seven trapping periods
were implemented: in March 2001, and in the months of May
(rainy season) and October (dry season) 2005, 2006, and 2007.
The site is surrounded by urban areas and has a low diver-
sity of mammalian fauna, including small monkeys (squir-
rel monkeys, golden-handed tamarins), sloths, rodents, mar-
supials, and bats. The second site, “Saint Georges de
I'Oyapock” (SG), is located near the Brazilian border and has
a low human population. This trapping site is located be-
tween the edge of a primary forest and a rural area. Three
trapping periods were carried out there in November 2006
and in June and November 2007.

At each site, 20 to 30 trap stations were used to capture
nonflying mammals. Each station included one Tomahawk
trap (50 X 18 X 18 cm; Tomahawk Live Trap Co., Toma-
hawk, WI) on the ground and 2 BTTm traps (33 X 11 X 10
cm; BTTm, Besangon Trap Service mécanique, France) or one
BTTm and one Sherman trap (23 X 9 X 8 cm; Sherman Trap
Co., Tallahassee, FL), with one trap being placed on the
ground and the other in trees between 1 and 3 m in height.
Traps were baited with apples and/or peanut butter for 15
to 21 consecutive nights and checked every morning. A to-
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tal effort of 7257 trap-nights (a trap-night is one trap set for
one night) was carried out between March 2001 and Octo-
ber 2007 at CT and 2822 trap-nights at SG between Novem-
ber 2006 and November 2007. A total of 418 mammals of the
orders Rodentia and Marsupialia were captured at CT, and
46 were captured at SG (Table 1). In addition, 125 and 27
bats representing 14 species were captured at CT and SG, re-
spectively, during the same periods on 2 to 4 consecutive
nights using capture mistnets (12 X 2.40 m, 16-mm mesh; La-
vorazione Reti, Monte Isola, BS Italy).

Captured animals were brought back to the laboratory,
identified using external morphological characteristics (Em-
mons and Feer 1997), and their age and sex were determined.
They were euthanized with pentobarbital (Dolethal®, Véto-
quinol, Lure, France) after chemical anesthesia (ketamine 10
mg/kg + xylazine 1 mg/kg) under veterinary supervision.
Blood and liver samples were collected aseptically and pre-
served at —80°C for later use.

Detection of dengue viral RNA in sera and liver samples
by reverse-transcriptate polymerase chain reaction

RNA was extracted from sera and liver tissues using Trizol
reagent (Invitrogen Life Technologies, Paisley, Refrewshire,
UK) following the manufacturer’s protocol. The RNA was re-
verse transcribed into cDNA using random hexamer oligonu-
cleotides (Roche, Mannheim, Germany) and moloney murine
leukemia virus reverse transcriptase (RT; Promega, Madison,
WI). Primers and polymerase chain reaction (PCR) conditions
were used following Lanciotti et al. (1992). cDNA (4 uL) was
then used for the seminested PCR: During the first run of PCR,
primers D1 and D2 were used to amplify a fragment of 511 bp
corresponding to a portion of the capsid and premembrane
(C/prM) genes. The second amplification run corresponds to
a seminested PCR using primers D1 and TS1-TS2-TS3-TS4.
Each of the last four primers is serotype specific, generating
PCR products of different sizes (482 bp for DENV-1, 119 bp
for DENV-2, 290 bp for DENV-3, and 392 bp for DENV-4). For
each experiment and at every step, all the necessary controls
were carried out to confirm that contamination did not occur.

After serotype identification of positive animals, the first
RT-PCR products were then used for another seminested
PCR amplification using D1 and one of the newly designed
primers to obtain longer amplification products (Table 2). The
amplification was carried out as follows: an initial denatu-
ration at 94°C for 5 min, then 25 cycles at 94°C for 30 s, 52°C
for 90 s, and 72°C for 60 s, followed by a final incubation at
72°C for 10 min. The obtained PCR products were then di-
rectly sequenced using the amplification primers. Sequenc-
ing was carried out with an automatic sequence analyzer
(ABI PRISM 3700, Applera, Courtaboeuf, France) following
the manufacturer’s protocol. DENV PCR products obtained
from humans (CNR des Arbovirus et Virus Influenza, Insti-
tut Pasteur de la Guyane) during contemporary periods were
sequenced using the same primer pairs. Sequences were then
aligned with other previously published sequences of
dengue virus using MEGA software and alignments were
checked manually. Database searches using the BLAST web
server (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) were
performed to identify the most closely related strains to those
obtained from wild mammals.

Phylogenetic analyses were performed using PAUP*4.0b8
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(Swofford 1998). The MODELTEST 3.7 program (Posada and
Crandall 1998) was used to determine the optimal model of
nucleotide evolution for the dataset, which was then applied
for distance and maximum likelihood analyses. The resul-
tant topology was examined by bootstrapping. One thou-
sand iterations were performed for distance analyses and 100
replicates for maximum likelihood analyses. In addition, a
Bayesian analysis was performed with MrBayes 3.1.0 (Ron-
quist and Huelsenbeck 2003) to infer phylogenetic relation-
ships. Markov Chain Monte Carlo simulations were run for
1,000,000 generations, with six simultaneous chains, using a
sample frequency of 100 and a burn-in of 100,000. Default
settings for the prior probabilities of the model parameters
(GTR+TI'4) were used.

Results
Detection of dengue virus RNA in mammals

A total of 569 livers and 560 sera collected from 616 cap-
tured mammals were tested for the presence of viral RNA
by RT-PCR. Dengue viral RNA representing the four
serotypes was detected in samples from both collecting sites
for a total of 92 mammals (Table 1). At the CT site, 16%
(87/543) of the animals were infected; the distribution of
DENV-1, -2, -3, and -4 at this site was 41% (36/87), 20%, 33%,
and 6% respectively. The distribution of DENV positive
mammals by order was: Chiroptera 4% (19/543), Rodentia
5%, and Marsupialia 7%. At the SG site, only 7% (5/72) of
the mammals, representing a single rodent species
(Proechimys cuvieri) and trapped during a single session, were
positive; they represented the DENV-3 serotype: 4% (3/72)
and the DENV-4 serotype: 3% (2/72).

Sequence analyses and phylogenetic investigations

At least one C/prM sequence was obtained for each
serotype from mammals collected in 2006 and 2007. These
sequences were deposited in GenBank under the accession
numbers EU518594-EU518605, EU522110, and EU642553.

One sequence was obtained from DENV-1 RNA detected
in one bat (Carollia perspicillata) captured in May 2007 at CT
(accession number: EU518594). BLAST database searches of
the obtained sequence revealed that the DENV-1 Mochizuki
strain detected in Japan in 1943 is the most closely related
strain with 97.3% identity (419 bp analyzed). Furthermore,
the DENV-1 strain circulating in humans in French Guiana
(EU518605) during the same period presents a lesser degree
of identity (92.6%; Table 3). Phylogenetic analyses show that
the major genotypes of DENV-1 (genotypes IV and V) are
supported with high bootstrap values with the exception of
genotype I (Fig. 1). The phylogenetic reconstruction confirms
that the D1 C0558 bat French Guiana 2007 sequence is closely
related to the Japanese DENV-1 Mochizuchi strain with high
bootstrap values (80% in distance, 64% in maximum likelihood
[ML], 76% in Bayesian analysis) and belongs to genotype I.
In contrast, the DENV-1 strain identified in French Guiana
in the human population at a contemporary period belongs
to genotype V composed of American and Asian strains.

Four sequences were obtained from DENV-2 RNA de-
tected in four mammals captured in 2006 at CT. These se-
quences reveal two distinct groups. The first two sequences
(EU518601 and EU518602) were detected with DENV-2 RNA
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TaBLE 2. OLIGONUCLEOTIDE PRIMERS USED TO AMPLIFY AND SEQUENCE THE 4 DIFFERENT SEROTYPES OF DENGUE VIRUSES

Size in bp of

Genome amplified DNA
Primer Sequence position product
D1 5'-TCAATATGCTGAAACGCGCGAGAAACCG-3' a
DIL 5 -TAGGTCATTGTGTCCTCACATAACTCTCC-3’ 560-588 457 bp (D1/D1L)
D2L 5 -CTTGTACGTGATTGTATCTTCACACA-3’ 569-594 461 bp (D1/D2L)
D3L 5 -TTGTAAGTGACCGTGTCATCACACAT-3' 566-594 460 bp (D1/D3L)
D4L 5'-TCCATGGCAATGAGAGTGCATTTGTTGA-3’ 533-560 424 bp (D1/D4L)

aThe priming position of primer D1 in each genome was as follows: type 1: 132; type 2: 134; type 3: 132; type 4: 137.
The position of each primer (DIL to D4L) is given according to its position in reference sequences (DENV-1: AF226685; DENV-2:

NC_001474; DENV-3: NC_001475; DENV-4: NC_002640)

The size of the amplified RT-PCR product for each serotype using D1 and each specific primer (D1L to D4L) corresponds to the length

observed between D1 and each primer on its respective genome.

identified in two marsupials (Didelphis marsupialis). BLAST
database searches revealed that they share approximately
95% identity (390 bp analyzed) with a strain isolated in In-
dia in 2001 (Table 3). Comparison with a human sequence
obtained in French Guiana during the same period reveals
approximately 89% identity (Table 2). The two other se-
quences (EU518603 and EU518604) were obtained from
DENV-2 RNA detected in two Marmosa murina (Marsupialia)
and are most closely related to a sequence detected in the
Dominican Republic in 2001 with which identities vary be-
tween 99.2 and 99.7%. They are also closely related to the
DENV human sequence obtained in French Guiana at the
same period (98.7 and 99.2% similarity; Table 2).

Phylogenetic analyses performed on these sequences with
other representative strains enabled the five major DENV-2
lineages to be identified on the basis of consistent topologi-
cal associations. Nevertheless, although the Asian, Ameri-
can-Asian, American, and sylvatic lineages are supported
with high bootstrap values, the cosmopolitan lineage is less
supported and divided into two clades that are supported
with high bootstrap values (Fig. 2). The DENV-2 sequences
identified in mammals segregated into two distinct clusters.
Two strains (D2 B1004 Marsupial French Guiana 2006 and
D2 B1010 Marsupial French Guiana 2006) were related with
high bootstrap values (81% in distance, 78% in ML, 100% in
Bayesian analysis) to an urban strain circulating in French
Guiana during the same period, and to strains identified in
the Dominican Republic in 2001 (Fig. 2). These sequences are
included in the American-Asian genotype that is well sup-
ported (93% in distance, 96% in ML, 100% in Bayesian anal-
ysis). The two other sequences (D2 B1015 Marsupial French
Guiana 2006 and D2 B1032 Marsupial French Guiana 2006)
are located at the base of the Native American lineage. This
association is also well supported (87% in distance, 69% in
ML, 98% in Bayesian analysis).

Three sequences were obtained from DENV-3 RNA ex-
tracted from three mammals: two in Marmosa murina (Mar-
supialia) captured at CT in October 2006 and 2007 (EU518599
and EU518598, respectively) and one in Procchimys cuvieri
(Rodentia) captured at SG in November 2006 (EU518600).
These three sequences are closely related to each other and
to a strain identified in Brazil in 2002 as well as to the H87
strain isolated in the Philippines in 1956. They show from
99.7 to 100% identity (on a 364 bp fragment) with these se-
quences. Comparison of the three nucleotide sequences with

the nucleotide sequence representing a human DENV-3 iso-
lated in French Guiana during the same period shows ap-
proximately 95% identity (Table 3).

Phylogenetic reconstruction reveals that the three se-
quences detected in mammals (D3 B1018 Marsupial French
Guiana 2006, D3 C1034 Marsupial French Guiana 2007, and
D3 B1106 Rodent French Guiana 2006) are related with high
bootstrap values (99% in distance, 97% in ML, 100% in
Bayesian analysis) to strains isolated in the Philippines in
1956, in China in 1980, and in Brazil in 2002. These sequences
cluster together and belong to genotype V (Fig. 3). The hu-
man strain circulating in French Guiana at a contemporary
period belongs to genotype III composed of strains from Cen-
tral and South America, Africa, Asia, and the West Indies
(Fig. 3).

Two sequences were obtained from DENV-4 RNA de-
tected in a marsupial Didelphis marsupialis (EU518596) and a
rodent Procchimys cuvieri (EU518595), which were trapped in
2006. The C/prM sequence is identical to a strain isolated in
2001 in Peru and is closely related to the H241 strain isolated
in 1956 in the Philippines (AY947539) with 99.5% identity
(360 bp analyzed; Table 2). Finally, they share 95.8% iden-
tity with a strain observed in French Guiana (EU522110) in
2005. Phylogenetic reconstructions reveal that the mam-
malian strains (D4 B1008 Marsupial French Guiana 2006 and
D4 B1106 Rodent French Guiana 2006) are associated with
strains isolated in the Philippines in 1956 and 1995, in Peru
(2001), and in Brazil (2006). This group of sequences belongs
to genotype I, which is not well supported (Fig. 4). In con-
trast, the only DENV-4 strain isolated in humans in French
Guiana in 2005 belongs, together with other South Ameri-
can and West Indian strains, to genotype II.

Discussion

In the New World, unlike in the Old World, the commonly
held belief is that dengue infection is absent in the fauna. Af-
ter recent evidences of positive seroneutralization in wild
fauna, we identified viral RNA in many species of South
American bats, rodents, and marsupials, and we provide the
first C/prM sequences of strains of DENV-1, DENV-2,
DENV-3, and DENV-4 circulating in animal communities.
These results were found repeatedly both in an endemic area
where all four serotypes circulate in the adjacent human pop-
ulations (Fig. 5) and in an area where the disease is nearly
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FIG.1. Phylogenetic Analysis of DENV-1 Isolates. The phylogenetic tree was derived from the partial nucleotide sequences
of the C/prM genes (419 bp excluding primers) of representative strains belonging to the major lineages of DENV-1 (as
designated by Goncalvez et al., 2002) using Distances, Maximum Likelihood (ML) (PAUP, version 4.10), and Bayesian analy-
ses (1,000,000 replicates, MrBayes, version 3.1b). The following ML parameters corresponding to the TrN + G model were
used: Nucleotide frequencies were estimated to be as follows: A = 0.3098, C = 0.1997, G = 0.2389, T = 0.2515. The -InL
value was 1816.49. The shape parameter of the gamma distribution was estimated to be 0.2005. The tree was rooted on the
strains belonging to genotype IV. Support for nodes was provided by bootstrapping and the posterior probabilities of the
corresponding clades (i.e. 1000 and 100 replicates under distances and ML (in normal and boldface type respectively) and
under Bayesian analyses (in italics and underlined). DENV strains sequenced in this study are shown in boldface.
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FIG.2. Phylogenetic Analysis of DENV-2 Isolates. The phylogenetic tree was derived from the partial nucleotide sequences
of the C/prM genes (390bp excluding primers) of sylvatic and representative endemic DENV-2 (genotypes designated by
Twiddy et al., 2002) using Distances, Maximum Likelihood (ML) (PAUP, version 4.10), and Bayesian analyses (1,000,000
replicates, MrBayes, version 3.1b). The following ML parameters corresponding to the GTR + G model were used: Nucle-
otide frequencies were estimated to be as follows: A =0.3249, C = 0.2254, G = 0.2467, T = 0.2030. The -InL value was
2082.37. The shape parameter of the gamma distribution was estimated to be 0.2596. The tree was rooted on sylvatic strain

sequences. Support for nodes was provided by bootstrapping

and the posterior probabilities of the corresponding clades

(i.e. 1000 and 100 replicates under distances and ML (in normal and boldface type respectively) and under Bayesian analy-
ses (in italics and underlined). DENV strains sequenced in this study are shown in boldface.

absent. These findings suggest either spillover infections
from humans to mammals or a possible enzootic cycle in-
volving mammals. DENV sequences obtained from mam-
mals led to the development of two plausible scenarios.
First, on the basis of C/prM sequences, most of the
DENV-1, -2, -3, and -4 strains obtained from wild mammals
were divergent from those circulating in the surrounding
human populations during the same periods. The strains
identified in the wild mammalian fauna were found, at dif-

ferent periods, in periurban areas and in forest areas, where
human contacts are limited. This suggests that DENV in-
fection of wild mammals and its circulation in mammal
communities are widespread, which eliminates the possi-
bility that our positive results could be related to inciden-
tal, local, and/or time-restricted epiphenomena. Neverthe-
less, some authors have already recorded such divergent
strains and attributed them to laboratory contamination
(Rico-Hesse 2003). Although laboratory contamination can-
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FIG.3. Phylogenetic Analysis of DENV-3 Isolates. The phylogenetic tree was derived from the partial nucleotide sequences
of the C/prM genes (364 bp excluding primers) of representative strains belonging to the major lineages of DENV-3 (des-
ignated by Wittke et al. 2002) using Distances, Maximum Likelihood (ML) (PAUP, version 4.10), and Bayesian analyses
(1,000,000 replicates, MrBayes, version 3.1b). The following ML parameters corresponding to the TIM + G model were used:
Nucleotide frequencies were estimated to be as follows: A = 0.3134, C = 0.2206, G = 0.2354, T = 0.2306. The —InL value was
1279.91. The shape parameter of the gamma distribution was estimated to be 0.2177. The tree was rooted on the strains be-
longing to genotype II. Support for nodes was provided by bootstrapping and the posterior probabilities of the corre-
sponding clades (i.e. 1000 and 100 replicates under distances and ML (in normal and boldface type respectively) and un-
der Bayesian analyses (in italics and underlined). DENV strains sequenced in this study are shown in boldface.
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FIG.4. Phylogenetic Analysis of DENV-4 Isolates. The phylogenetic tree was derived from the partial nucleotide sequences
of the C/prM genes (360 bp excluding primers) of sylvatic and representative endemic DENV-4 (genotypes designated by
Lanciotti et al. 1997) using Distances, Maximum Likelihood (ML) (PAUP, version 4.10), and Bayesian analyses (1,000,000
replicates, MrBayes, version 3.1b). The following ML parameters corresponding to the TIM + G model were used: Nucle-
otide frequencies were estimated to be as follows: A = 0.3071, C = 0.2188, G = 0.2431, T = 0.2310. The -InL value was

1251.68. The shape parameter of the gamma distribution was

estimated to be 0.3141. The tree was rooted on sylvatic strain

sequences. Support for nodes was provided by bootstrapping and the posterior probabilities of the corresponding clades
(i.e. 1000 and 100 replicates under distances and ML (in normal and boldface type respectively) and under Bayesian analy-
ses (in italics and underlined). DENV strains sequenced in this study are shown in boldface.

not be excluded, we considered that this hypothesis bore
little relevance to our work. Indeed, none of the strains
closely related to the ones we identified in the fauna, with
the exception of the H87 DENV-3 strain, have been han-
dled in our institution. Furthermore, viral RNAs were ex-
tracted and amplified right after the collection of the sam-
ples, and the different mammal dengue strains were
identified repeatedly. Our data thus strongly suggest a for-
est circulation of all four serotypes of DENV, but conclu-
sive evidence will only be supported by isolating DENV
from forest-dwelling mosquitoes.

Moreover, although the relatedness of the mammalian
strains to the human ones is only based on a 400 bp anal-
ysis, DENV-1, DENV-3, and DENV-4 strains are related to
Asian strains that were isolated decades ago. The origin of
these strains in South American fauna thus remains highly

questionable. It could be explained either by the history of
dengue dispersal during the 17th and 18th centuries (Due-
nas 1909), or by its introduction by Asian migrants in the
first half of the 20th century (Rico-Hesse 2003). Then, mam-
mals could have maintained these strains and, under the
right conditions (vector pullulation, environmental distur-
bances), these strains could have escaped from mammals
and circulated at low levels among human populations.
For instance, recent DENV-4 strains isolated in humans in
Brazil in 2005 and 2006 cluster with the mammalian strains
we describe here (Pinto de Figueiredo et al. 2008). In the
same way, some DENV-3 strains detected in Brazil in 2002
(EF629370) and during epidemics that occurred there from
2002 to 2004 (Figueiredo et al. 2008) belong to genotype I
and are closely related to the ones we detected in mam-
mals in French Guiana. Nevertheless, considering the lim-
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FIG. 5. Prevalence of the Different Serotypes of DENV in the Human Population from January 2000 to December 2007 in
French Guiana as registered by the Centre National de Référence des Arbovirus et Virus Influenza. Time is indicated in
years using horizontal black arrows. Vertical black arrows indicate the period during which mammals were trapped and
samples were collected. DENV serotypes identified in mammals during the different sampling periods are presented be-
low each arrow. Dengue serotypes in boldface correspond to those identified in the area of le Camp du Tigre (CT) and
serotypes in boldface and italics correspond to those identified at CT and at the Saint Georges de 1'Oyapock (SG) site.

ited size of the sequences analyzed and, despite the fact
that the phylogenetic picture obtained is relevant and con-
gruent, hypotheses on the origins of these mammalian
strains and the possible infection of humans by them have
to be considered with caution. Generating the complete en-
velope gene sequences should enable us to support or re-
fute this scenario.

Secondly, the D2 B1004 20066 and D2 B1010 2006 se-
quences support the notion that fauna can also be infected
by strains circulating in surrounding human populations. In
fact, DENV-2 caused an epidemic in French Guiana from Jan-
uary to September 2006, and the two strains identified in two
Marmosa murina (marsupialia) in October 2006 are related to
the ones responsible for that epidemic. This strongly sug-
gests that under the pressure of a strong epidemic event, ur-
ban strains could enter the forest and then infect the fauna.
Such transmission, facilitated by hunting, logging, or
tourism, has already been suspected with Plasmodium falci-
parum (Volney et al. 2002). Moreover, the vector Aedes (Ste-
gomyia) aegypti, though mainly anthropophilic, can be found
at the edge of forest habitats (Fouque and Carinci 1996) and
could therefore provide a mechanism for virus introduction
in forest animal communities. It thus seems to be of major
importance to consider wildlife species not only as potential
reservoirs for DENV, but also as potential hosts, sensitive to
infection by “human” infectious agents.

On the basis of these results, it is suggested that wild an-
imals could maintain the four DENV serotypes in South

America. Further investigations will have to be conducted to
confirm their potential role as reservoirs and/or as sec-
ondary hosts (Haydon et al. 2002). Actually, all these mam-
malian species can be either an epidemic dead end or can
play a role in maintaining the virus during interepidemic pe-
riods or even in virus amplification. Experimental infections
will therefore be necessary to assess the efficiency of wild
mammals as reservoirs. The ecological dynamics of the mam-
malian species in relation to that of the virus will also need
to be explored. Lastly, extensive research on vectors will be
required. Aedes (Stegomyia) aegypti is the vector of DENV in
French Guiana, since Aedes (Stegomyia) albopictus is not
recorded in the department. Alhough it is associated with
human settlements, it has also been found in the rainforest
(Fouque et al. 2004) and could therefore be involved in
DENYV transmission between humans and mammals and be-
tween mammals. Our preliminary mosquito surveys at CT
revealed relatively low population densities of Aedes spp.,
which raises the question of whether other mosquito species
identified in the area (e.g., Coquilletidia, Culex, etc.) might be
involved in the circulation of the virus among mammals. Ex-
perimental infections have suggested that the role of Culex
mosquitoes may be negligible in DENV transmission
(Vazeille-Falcoz et al. 1999), but extensive vectorial capacity
studies on locally captured mosquitoes will be required.
Once the questions raised above will have been explored, the
results obtained could profoundly modify our vision of the
epidemiology of dengue virus in South America.
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